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The problem of correction of motion for the purpose of minimizing the disparity between 
the chosen coordinates at a given instant 6 is considered. The problem is complicated 
by the lack of complete information on the present phase state 5 [t] of the controlled 
object. This produces a new games situation interpreted as a differential game concern- 
ing two converging motions. The equations of motion are considered in linear approxi- 
mation. The present paper is closely related in subject-matter to papers [l-4] et al. 

1. Formulation of the problem, Let us consider the motion z [t] described 
in linear approximation by the equation 

dx/dt = A (t) x + B(t) u (1.1) 

Here x = {xi}, is the n-dimensional phase vector of the object measured from the 
prescribed motion x0 [t] FE 0; the r-dimensional vector u describes the controlling 
forces. The realizations u [t] of the permissible control u are restricted by the condi- 

tion u [tl E u (1.2) 

where u is some bounded convex closed set in the r-dimensional vector space. We shall 

consider the process over the segment 0 < t f 6. The deviation of the motion 2 [t] 
from the prescribed motion x0 [tl s 0 is given by the quantity 

y [tl = 11 {x [t&J (1.3) 

where the symbol { x}~ denotes a vector consisting of the first 312 coordinates of the 
vector x ; the symbol 1 Q 11 d enotes the Euclidean norm of the vector Q. 

The control goal is to minimize y [6l.The problem is complicated by the impossi- 
bility of measuring the present values of z[t] exactly. We assume that information 

about the phase states x[t] (0 < t< 6) is supplied [5] by the monitored signal w [‘G] 
(0 < ‘c < t) which is related to the phase vector x [zI by the expression 

w [.tl = P (T) X [Tl + f [zl (1.4) 

Here w [‘cl is a k-dimensional vector function and f 1~1 is the measurement error. 
The realizatfon of f I! is not known, but we do know that 

x [f [‘61, tl < Y (0 d 7 d t) (I.51 

This inequality restricts the intensity ( [S], p. 273) of, x possible realizations of f [z]. We 

assume that the quantity x [f, tl is some norm of the vector function f [Al (0 \c T < 
< t). We assume, moreover, that the domain r [OJ of possible initial values of the 

phase vector 2 101 has been defined, and that it is possible to measure the values of the 
generated controlling forces u [z]. 

Our task to find a control u which will deliver a motion x [t] ensuring the smallest 
possible value of y IS1 (1.3) for the least favorable cases of the error f [TI. Let us 
state the problem more precisely. 
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Let a phase state 2 ItI unknown to the organs generating the control u [t] be realized 
at the instant t (6 f t -C 6) . On the basis of the known signal {W [r] (0 6 r < t), Ulr] 
(0 < ‘t < t)) it is possible to form a notion of the domain I [t] of the phase space {LL) 

in which 5 It] may lie. (Estimation of the domain P ]t] is effected by some operation 
cp” Ii& U), tl which will be described below). By the feedback principle, the control 

u ]t] realized at a given instant t must be chosen on the basis of the estimate of the 
domain P [t]. It would therefore be convenient to construct the control in the form of 
a functional relation, i.e. in the form 

u [tl = u (6 r [tl) (1.6) 

However, in order to make our analysis valid for continuous control laws u character- 
istic of games problems we assume (e. g. see [6]) that the estimate of the domain 1’ [t] 

obtained by the instant I defines a whole set U (t, I [t]) of possible values of u [t] rather 

than just a single value of u ]t](l. 6). Thus, the control law for system (1.1) (the strategy 
u) is described by the contingency u ]t] E.U (t P ,t]) 

1 9 (1.7) 
Hence, in order to specify some control law, u for system (1.1) (i. e. in order to choose 

some strategy U) we must specify a system of sets CJ (t, I) which is defined for all t 
from the segment [0,6) and for all possible domains I? = P ]t] occurring during the Pro- 
cess. We therefore identify the strategy u with the system of sets U (t, I). The motion 

2 it] (to < t < 6) of system (1.1) for some strategy U is an absolutely continuous vec- 
tor function z [t] which satisfies Eq. (1.1) for u = u ]t] from (1.7) for almost all values 

of t from the segment [to, 61. We call the strategy u “permissible” if its choice ensures 
that any initial state x[t,] = x0 (and I it,]) generates a motion x [t] (to < t < 6) of 
system (1.1). 

Let the unknown state 2 [t,] = Q, and the known estimate r It,,] be realized. The 
chosen permissible strategy c( 1.7) and the relization of the error f [r] (t > t,) in (1.4) 

determine the motions 2 [t] (t > to). We denote the resulting quantity r [6] (1.3) by 

y (6 j 43, r [t,l, u, f) . w e are now ready to formulate the problem in the following 

way. 
Problem 1.1. We are to find the optimal strategy U”form among the permissible 

strategies u which ensures fulfilment of the inequality 

rV%, r[M, u”7f)<suP y*; 2; r(6143, r[~ol, u, f) 

~2~ E r [tOi, x [f hGi < Y, T 4 t, to q t < 6) (1.8) 

for every possible initial estimate of r [t,l. 

(Uniqueness of the motions 3: [t] (to < t ( a) corresonding to the initial state 2 [toI = 
= zO is not assumed. This explains the symbol j,:F in the right side of inequality (1.8). 

In the left side of (1.8) we mean any motion z It] which satisfies the indicated condi- 

tions. ) 

2. The tracking operatlon. The content of Problem 1.1 depends on the 

choice of the operations ‘p” ]{w, u}, tl which determine the estimates of the domains 
r [t]. It is, of course, possible to pose the general problem of choosing the best operations 

‘7 from some broad class. We could limit ourselves to a fairly narrow ChSS Of Such ape- 

rations, Stipulating, however, that these must be more or less effectively describable. Our 

method of constructing these operations iS aS fOllOWS. 
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By the conditions of the problem we have a prior estimate of the domain I’ [O] of 
possible initial phase states 5 IO]. It is more convenient, however, to deal with the do- 
main G,[O] rather than with J’ [of ; the former is the mapping of the domain I’ [Of 
into the m-dimensional space {Q} in accordance with the equation 

Q = IX [6, 01 “}m (x E r [OI) (2.1) 

where X [t, t,l is the ~ndamental matrix of solutions of the equation 

dx/dt = A (t) 2 (2.2) 

It is clear that G,[Ol is the totality of those points q = (5 (6)},* to which system 

(2.2) is brought from the states z (0) E I'[01 by the instant 6. We assume from now 

on that the domain GO [0] is a parallelepiped, 

aio =G 4i d Pi0 (i = 1, ..,, m) (2.3) 

(If this is not valid for the initial domain I’ IO1 , then we can place I’ [O] in a larger 
domain I?.+ [oj for which the required condition is, in fact, fulfilled. The above condi- 

tion also assists computation.) 
Let the signal w [x] (1.4) be realized by the instant t from the interval 0 <z < t ; 

let us assume, moreover, that the control u 1~1 was acting over the interval O,< ‘t< t l 
We are to construct an operator ‘p [{zu [x], zc IT]}, tl which will reconstruct the vec- 

tor 
q = {X [6, tl 2 ItI), (2.4) 

from the signal {w [zl, u [tl} optimally in the sense that each of the coordinates qi 
of the vector q is determined with the smallest possible error wi ft]. (The construction 

of such optimal tracking operations is described in [S], pp. 279-291. -We shalt assume 
that the conditions of solvability of the problem laid down in this monograph are ful- 

filled). Thus, let the operation ‘p [{w, u}, tl yield the result q = q [tl. This means 
that the state x ftf which is actually realized at the instant t is such that from this 

state system (2.2) can, by the instant 6, pass only into a state {I (6)}, = q from some 
domain G [t] described by the inequalities 

/ q; - qi ItI I< oi It1 (i=l, .‘.., tn) (2.5) 
These inequalities already provide an estimate of the domain r It]. However, we 

must also take account of the results of previous estimates of the domains G [t,] for 

t* ( t,as well as the prior estimate of G 101 (2.3). We can do this in the following 
way. First, we assume that no estimates of the domain r (t* ] for 0 < t, < t were 

made in the segment [O, tl , and that by the instant t we h$ve only the prior estimate 

of I’ 101. Since the control u fal was operating on the segment 0 < T < t , the domain 
I? 101 known to us a priori 1s transformable into some domain r to, tf;* Its trans- 
formation is described by the linear transform 

t 

X *= x it, O] X + !‘x [t, T] B(z) u (z) dzc (2.6) 

0 

(2, E 1: IO, ti, 2 E r 101) 
The domain I‘ IO, tl can once again be estimated conveniently in terms of its image 

G,,[O, t] in the space {q) under the linear ~ansformation 

q* == {X [6, tl x*},, x* E I‘ LO, tl (2.7) 
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Expressions (2.1) and (2.7) imply that the domain G,,[O, t] is the domain G [O] dis- 
placed by the vector 

A”(0, t) = {iX [6, W(W+r}m 
0 

Our prior estimate of the domain r [O] therefore implies that by the moment t we 
can only have a phase state 2 [t] such that system (2.2) can pass only into a state 

{4Wm = Q f rom the domain G,[O, t] by the instant 6. But, recalling our descrip- 
tion of the domain G [ tl (see [S], p. 338) and taking account of the result of the opera- 

tion cp[{w, u}, tl, we can say that the state 2 [t] realized at the instant t is such that 
from it system (2.2) necessarily passes into a state 4 = {Z (6)}, lying in the intersec- 

tion of the domains G,[(), t] and G [t]. Reasoning in similar fashion and recalling the 

results G [t,] of the operations CP [{w, u}, t,] 
for all t, < t, we conclude that the state 

realized at the instant t is such that system 
(2.2) can only pass into a state Q = { 5 (fi)}, 
lying in the domain (.X8) 

Go [tl = fl G [&, tl n G,[W] 
O&*-3 

where G [t,, t] is the domain in the space 
{Q} obtainable from the domain G [t,] by 
displacement by the vector 

(2.9) 

f‘(t*> t) =$W, t*]H(z)u(T) d~}~, 

Fig. 1 
It is this conf;ruction of the domain G” [t] 

which we call “the operation cp” [{w, u},t].” 

The domains Go [t] provide the required description of the domains r [t]. Hence, from 
now on we shall associate the sets u (t, r [t]) d e ining the strategy U with the domains f 
G” [t], i. e. we shall specify contingencies (1.7) in the form 

u It1 E U (t, G” [tlb (2.10) 

Finally, we note that the domains G”[t] are parallelepipeds, i.e. that 

ai ItI < q1 6 pi ItI (i--l,. . . n) (2.11) 

This follows from the fact that all of the domains G [t,, t], which by (2.8) define the 
domain Go [t] (Fig. 1). are themselves papallelepipeds. 

3, The correctfon problem 88 a convergence game. Problem 1.1 
can be interpreted as a game of finding the minimax of the disparity between the coor- 
dinates of two controlled motions. Let us explain this. Let us assume that the dom.rGr 

Go [t](2. 8) became known at th2 instant t and that the unknown state 2 [t] was real- 
ized at the same instant. The symbol 5* [t] denotes a phase state from the domain 

r [t] which satisfies the condition 

{X[tiJ] x* ltl}, = q* ItI (3.1) 

where q* [t] is the center of the domain G” [t], i. e. 

q*i it] = l/z (Pi [tl + xi [Ll) (i-l,... , m) (3.2) 

Let us write the equation of motion for the realization + [t] in the form 
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ds,/dt = A (t) z* + B (t) u - v (3.3) 

where v is some fictitious control. We assume that the known state 2 = X* [t] is real- 
ized at the instant t in system (1.1) under consideration ; we also assume that the “con- 
trol” v can shift this state in an unknown fashion without taking it out of the domain 
r [r] (r > t) for r f 0. (For example,to obtain the actually realized state J: [t] = 
= x* [t + 01 we need merely set 

21 [‘61 = (z* it1 - 5 ItI) 6 (7 - t) 

where 6 (‘6) is a delta function). Next, we express the vector X* [t] as a difference, 

2* It1 = y [tl - 2 It1 (3.4) 
and assume that the motion y ]t] is given by the equation 

dy/cit = A (t) y + B (t) u (3.5) 

and the motion z [t] by the equation 

dz/dt = A (t) z + v (3.6) 
If the disparity between the motions y [t] and z itI is defined as the quantity 

Y* It] = II {Y ]tl - z ]t + Ol>, II (3.7) 
then initial Problem 1.1 can be interpreted as one of choosing the optimal control u 
which provides the “pursuer” y [t] (3.5) with the best possible convergence y.+ [+I 
with the “target” z [t] (3.6) for the least favorable behavior of the latter. The control 
u is restricted by condition (1.2), and the control 2’ by the condition that the changes in 

the vector z [t] which it produces always retain the vector X* [t $- 01 = p ItI - 
- z it + 01 in the domains r [t] (0 < t ,< 6). Thus, the initial problem does, in fact, 
reduce to a certain games problem on the convergence of two motions. 

4. The extremal construction. Let us solve the minimax problem for the 
quantity JJ* [S] (3.7) on the basis of the extremal aiming rule [S, 61. To this end we 
must consider the attainability domains (defined, for example, in [S]. p. 331) G(l) (t, 6, 
p) and G(‘Q (t, 6, z) for the motions ZJ and z. 

The attainability domain G(r) (t, 6, y) for the motion y (3.5) from the state y [t] = y 
by the instant fl under restriction (1.2) is constructed in similar fashion and is described 
by the inequality (e. g. see [5]) 

P(” (t, 2) + I’ (S [fi, t] ylm- Z’q > 0 (4.1) 

which is satisfied by the points q from the domain G(t) (t, 6, y) (and only by these points) 
for all values of the ~~r~imensional vector 1. Here 

(4.2) 

where the prime indicates transposition. 
Construction of the domains (Y) (t, 6, z) is determined by the domains G” [t] (2.8). 

(2.11). In fact,let the state z = z It] be realized. By (3.4),z [t] =ZJ [t] - x* [t]. 
If the control v (r) were equal to zero in the interval t < T < 6 , then system (3.6) 
would be in the state (see (3.1)) 

{:: (6)}, = q = {X 16, tl (y[tl - x*rtl)}, = (4.3) 

= {X IS, tl y M}, - q*ltl 
by the instant 6. 
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However, under the action of the control v (z) system (3.6) (in the sense of this con- 
trol v (z)) can find itself in any state { .Z (6 f o)},= 4 which satisfies the inequal- 
ities 

I 4i - { X[fi, tl Y ItI }mi + 4*i bl 1 < ‘/z (Pa it1 - a, bl) (4.4) 
(i=l,...,m) 

It is these inequalities which define the domain G12) (t, 6, z [t]). It is important to 
note that the estimates (4.4) realized in the course of the process determine the domains 
Gt2) (t, 6, z [tl) in such a way that the basic conditions 

GC2) (t.+., 6, z [t.J) 3 Gt2) (t, 6, z [tl) (t+ < t) (4.5) 

tx [e-+ol}m = {y[61}, - {z [6 + ol},, (2 [fi + ol}, ~G(~)(fh 6, 2 W 
are fulfilled. (4.6) 

Relations (4.5) and (4.6) enable us to interpret Gc2) as the attainability domain tar 

the motion z. This domain conforms to the argument of [S. 61 concerning extremal con- 
trol schemes. 

The validity of (4.6) follows directly from the definition of the domain G(2) (4.4) in 

the sense of the quantities CL~ [tl, & [tl (2.11) and the vector Y. It] (3.1). Let us verify 

the validity of imbedding (4.5). We infer from (4.4) that G(” (t,, 8, 2 It,], is the do- 
main symmetric to the domain Go [t,] with respect to the point q = 0 and dispIaced 

~anslationallY bY the vector p [1,] = (X [S, t,] y [t,]jnr (4.7) 

while Gc2) (1, 6, z [t]) (t > t.) is a domain symmetric to the domain GoIt] with respect 
to the point Q = 0 and displaced translationally by the vector 

p]tl=@]fi, ~lY[wm=(Xvt t*lY tt*l+i XL69 ~lwwt) (LS) 
m 

But according to (2.8). for t ) t, the domain Go [t] forms a part of the domain G” It,] 
displaced by the vector Au (t,, t) (2.9). By virtue of (4.7),(4.8), this implies the validity 

of relation (4.5). 

Now let us describe an extremal aiming scheme 
appropriate to this case. Let the values of the motions 

y [t] and z [t] realized at the instant t be contained 

in the known parameters 4* [t] (3.1) and czi [tl, 
pi [tl (2.11) from the domain G” [t]. Assuming 
provisionally that the realized vectors y [t] and 

z [t] are known,weconstruct the attainability domain 
GP)(t, 6, s[ ~1) and the smallest &neighborhood 
GP) (t, 6, y it], 8’) of the attainability domain 
G(l) (t, 9, y [t]) which contains the former attain- 
ability domain. If it turns out for 0 < t < 6 that 

Fig. 2 whenever e” > 0 , the boundaries of these domains 
intersect only along the sets Q” [t],each of which 

lies entirely in the hyperplane 
E”’ [tl 4 = p it1 (4.9) 

unique for each .? , then we have the coarse case [6]. This means that the optimal con- 
trol u = u [t] which solves the problem consists of the condition of aiming of the 

motion y [t] at any point Q’ It] E Q” It] (Fig.2). 
It is important to note that this control is determined by the known quantities ar [t], 
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fii [t]. in fact, the aiming control u [t] = U, E U is here determined by the maxi- 

mum condition l”‘!X [S, t]B(t)u,.,= max[Z”‘(X[6, t] B(t)u},] (4.10) 

where the m-dimensional unit vector I” is the e%&ior normal to the domam G (‘j (t, 6, 
y [t], e” it]) at the point o” It] where the boundary of this domain comes in contact 

with the domain Gc2) (t, 6, z [t]). But this vector 1” [t] is determined solely by the 

relative positions of these domains. Because of the monotype character of systems (3.5). 
(3.6) and by virtue of the equation x* [tl = y [t] - z [t] , this relative disposition 
of the domains G(r) and G(2) is determined solely by the parameters a. [t], pi [t] , 
and p(l) of the domains G(r) and G(a), which therefore determine the ;ector d” and with 

it the optimal control u” It] = U* (4.10). (The validity of this statement is also evi- 

dent directly from relations (4.1). (4.4) which define the domains G(r) and GC2).) 
Thus, in accordance with [S], Problem 1.1 has a 

solution in the coarse case. The strategy U” is 

given by the sets U” (t, a, [tl, . . ., a, itI, h 

It],. . - -, &Jm ,consisting of all the vectors 
u* E u which satisfy conditions (4.10). This stra- 
tegy ensures a correction result Y ]61 not worse 
than E’ [Ol, i. e. J’ ]fi] < a0 ]o] (4.11) 

It should be noted that the coarse case for the 
above games problem of convergence derived from 

initial correction Problem 1.1 is rather exceptional. 

Fig. 3 
The next section is therefore concerned with the 
more natural regularizable critical case. 

6. The critical COIN. Let a situation be realized in which by a certain instant 
t = t, > 0 the boundary H(*)(t,. 6, y [$I; E’ It,,]) (8’ ) 0) of the domain G(l) 

(to, 6, Y [to]; e” [toI) h as an intersection Q” ito1 with the domain G@)(t,, 6, z[t,]) 
which does not fit into a unique hyperplane of the form (4.9). Let us construct the do- 

main G(l)@,,, 6, y [toI; e” &,,I + q), where ?I > 0 is a small constant. From the 
definition of the quantity co we infer that the domain G(a) (to, 6, z [t,]) lies strictly 

within the domain G(r)(t,, 6, y It,]; e” [tb] + 7). o ur choice of the control u [t] for 
t > to is subject to the desire to preserve the imbedding 

Gc2) (t, 6, z [tl; e [tl) C G(l) (t, 6, y [tl; E’ [toI + q [tl) (5.1) 
for e it] > 0 and for q It] = q = const , or, at the very least, under the condition of 
maximally slow increase of the variable ,rl [t] with increasing time t. We construct the 
conuol u in the following way. 

Let a state {t*, y It,1 = y,, z [t,] = z,} (characterized by the measurable quan- 

tities q*[t,l, ai it,], pi it,1 (i = 1, . . ., m)) be realized by some instant t = 
= t, > t,. We assume that this is accompanied by -the fulfilment of condition (5.1) 
with some value q [t,] realized by the given instant t = t,. Let us choose some m- 
vector 1 of the exterior normal to the domain G(l) (t*, 6, y*; e” It,,] + q [t,]). The 

symbol E (I, t,, Y*, GC2Vt*, “‘f, 2,)) = E (I, t,{$[t,l, pi[t*l]) denotes the distance 
between the hyperplanes L(r) (I) and L@)(Z) which are orthogonal to I and tangent to 
the domains GJ) and G(q) (Fig. 3). 

Let us construct the function 



384 N. N. Krasovskii 

A (2,-y, G”’ (t, 6, z)) = s cp 15 (I, t, Y, G”!)] d5 (5.2) 
II 1 II<1 

where ‘p [j] > 0 is a smooth function monotonic for E > 0 and of order g-” as 

E -+ 0; the integral is taken over the sphere /JZll < 1. Let us assume that for t, < t < 

< t, + At the quantity y (t) varies in accordance with Eq. (3.5), where u = u (t) 
is some measurable function continuous from the right at the point t = t,; let the do- 
main G(2) (t, 6, z (t)) vary in accordance with the measurements of the signal w (z) 
(see Sect. 4) ; we assume that the quantity tl (t) is constant on the segment [t,, t, + 
+ At] . Next, considering the variation of the function h (t) = h (t, y (t), G@) (1, 
6, z (t)) in the small interval it.+, t.++ At], we can use the standard reasoning of 
maximum-principle theory [7] to obtain the estimate 

( $1, ““<-s’(&, G”[t,l)B(t,)u(t,) + x (<j.s) 

characterizing the effect of the control u on the variation of the function h (t). 
Here (da / dt)+(“) d enotes the right-hand upper derivative of the function h (t) for 

t = t,; the n-dimensional vector s is defined by the equation 

s(t, G”[tl) = 1 $%t*, J)dL (5.4) 
II 1 II<1 

where the n-dimensional vector function cp (t, I) is the solution of the equation 

d* -=- 
dt A’ (t) -dJ (5.5) 

under the boundary condition 
I#’ (6, 1)) = { 1’9 01 

The term X appearing in the right side of (5.3) will not be involved in the subsequent 
construction of the control u It*]. Knowledge of the expression for X is necessary in 
estimating the quantity (dh /dt+tb)). It is not possible to develop here a detailed prior 
estimate for this quantity which would be effective in a more or less general case. We 
shall therefore omit further consideration of the term X . 

The first term in the right side of (5.3) reaches its minimum under a control u (t*) = 
= IL, E U which satisfies the following randomized maximum condition: 

s’ (r*, G” [&I) B (t*) U* = rnn; a’ (t*, Go [&I) B (&) u (5.(i) 

The strategy U’which determines the control u will be defined in terms of the sets 
U” (t,, G” it* J) consisting of all those vectors u, from U which satisfy condition (5.6). 
Under sufficiently broad conditions this strategy Ii” is permissible ; moreover, an estimate 
of the form (5.3) is valid along the true realizations of the motions y [t], z [t] for 

u [t,l E U” (t*, G” [t,]) . If the inequality 

[G),‘“’ < - s’ (t, G” [t]) B (t) ultl + x < p (5.7) 

(u ItI E U” (t, G” [tl), p = const) 

is valid for 7 [t] = tl [t,,] = const for all times t > t,,, then the realization h [t] 
remains bounded for all t > t,. However, by the construction of the function h (5.2) , 
this implies that imbedding (5.1) for 7 [t] = q [t,] is valid for all t > t, . But for 
& = 6 this imbedding implies that 

y 161 < E0 It,1 $- y [toI (5.8) 

We call the case where condition (5.7) is fulfilled the “regularizable critical case”. 
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Thus, in the regularizable critical case we construct a strategy u” which yields a correc- 

tion result y 16 J not worse than (5.8). 
If inequality (5. ‘7) cannot be fulfilled, then we can make use of the same strategy u” 

described at the beginning of the present section. However, preservation of imbedding 
(5.1) then requires alteration of the quantity n[t]. When q [t] changes, the right side 

of inequality (5.7) contains an additional term Y of the form 

(.x9) 

and the value of the lower right-hand derivative (dn / dt)(,)+ can be chosen such that, 
for example, (dh / dt)?) \< 0. If estimation of the required value of (dq / dt)(,)+ from 
the realized position {t, G [t]} is not easy because of the difficulties of prior estimation 

of X, then it is possible to choose the values of [dq / dt)(Hl+ at each instant t, e.g. from 

the conditions 
(5.10) 

where the lower left-hand derivative (dh/ dt)(,+ of the function is determined from a 

past realization of 3\. (t) which has become known. (The control method actually speci- 

fied must, of course, be implemented by a discrete scheme). It should be noted that the 
control method just described has to be evaluated for stability, since it involves a differ- 

entiation operation. 

6. Compariton with the minimax strategy. A correction problem 
similar to that with which we began our formulation of Problem 1.1 is considered in 143. 
However, the method of correction described in [4] differs from the control method 
described here with reference to Problem 1.1 (Shelement’ev [4] describes a discrete- 
time scheme for allowing for the measurements of the signal w (r) ; but this is not im- 

portant, since the same scheme can be extended to the continuous case). The essential 
difference between the control methods is as follows. Employing the language of systems 
(3.5).(3.6), we can say that the control u [tl is chosen in [4] at the instant t from the 
condition of aiming of the motion y [t] at the point q = q. from the attainability 

G(l)@, 6, y [tl) in which the minimax 

min,maxp 11 p - q 11 = e0 [tl (6.1) 

is attained for all q from G(l) (t, 6, y [t]) and all p from G(2) (t, 6, z [tl) . Ful- 
filment of the correction result 

is ensured. y 161 < Eo It1 (6.2) 
In contrast to this, we choose the control u [t] on the basis of the condition of aiming 

of the motion y [t] at a point q = qafrom the domain GP)(t, 6, y It]) which corre- 
sponds to the maximin max,min, JI p - q (I = E’ It1 (6.3) 

for air q from G(l) (t, 6, ZJ [tl) and for all p from Go(t, 6, z [tl). Since e” [t] < 
< e. [ tl, it follows that the latter control method must generally yield a better result 

in the coarse case, or at least in the regularizable case, i.e. when inequalities (4.11) or 

(5.8) are fulfilled. We must bear in mind, however, that inequality (6.2) is always ful- 
filled, while inequalities (4.11) or (5. 8) are fulfilled only under the stated conditions. 
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Displacement operators constructed with the aid of all the constraints are used to derive 
a form of the equations of motion which is valid for both holonomic and nonholonomic 
mechanical systems. In the case of holonomic systems the equations coincide with the 

familiar equations of Poincark [1,2]. 

1, Conorructing the displacement oparator:. Let the positions of a 
mechanical system with I degrees of freedom be defined by the n variables 51r . . . 

. .., X, subject to n - I linear constraints 

qjdt G i ajidri +a,dt=O (i=l-+i,...,n) (1.1) 
i=l 

on the real displacenets, and to the equations 

(1.2) 
i=l 

on the virtual displacements. 
Here aji, aio are functions of the variables t, xi; dxi, 6xi are the differentials and 

variations of the variables xi on the real and virtual displacements of the system. 
Following Chetaev p], we complement (1.2) by a system of I linear differential forms 

01, . . *, 01 (1.3) 

which are independent of each other and also with respect to the__forms o~,_~, . . ., 61, 
of (1.2). Next, we define the total variation of the function f (t, xi) by the formula 


